MISSISSIPPI STATE DEPARTMENT OF HEALTH 2013 JUN 25 AM 8: 50 BUREAU OF PUBLIC WATER SUPPLY CALENDAR YEAR 2012 Public Water Supply Name OOR OOR DOOD FORM CALENDAR YEAR 2012 Public Water Supply Name OR OR OR OR OF OR
Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other)
Advertisement in local paper (attach copy of advertisement) On water bills (attach copy of bill) Email message (MUST Email the message to the address below) Other On Message Pages in felliaga Office Date(s) customers were informed: 6/9/20/3 / 6//8, 20/3/(In/office)
Date(s) customers were informed: $6/9/20/3 / 6/8 \cdot 203/(70/07)$
CCR was distributed by U.S. Postal Service or other direct delivery. Must specify other direct delivery methods used
Date Mailed/Distributed://
CCR was distributed by Email (MUST Email MSDH a copy) As a URL (Provide URL As an attachment As text within the body of the email message
CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)
Name of Newspaper: The Greenwood Commonwoalth
Name of Newspaper: The Greenwood Commonwoodth Date Published: 6/19/2013 Pellucia CCR was posted in public places. (Attach list of locations) Building Date Posted: 6/18/2013
CCR was posted in public places. (Attach list of locations) Reciploing Date Posted: 6/18/2013
CCR was posted on a publicly accessible internet site at the following address (DIRECT URL REQUIRED):
CERTIFICATION I hereby certify that the 2012 Consumer Confidence Report (CCR) has been distributed to the customers of this public water system in the form and manner identified above and that I used distribution methods allowed by the SDWA. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi State Department of Health, Bureau of Public Water Supply. Name/Title (President, Mayor, Owner, etc.) P.R. W. A. Date

Deliver or send via U.S. Postal Service: Bureau of Public Water Supply P.O. Box 1700 Jackson, MS 39215

May be faxed to: (601)576-7800

May be emailed to: Melanie. Yanklowski@msdh.state.ms.us

2013 JUN 17 PM 2: 56

2012 Annual Drinking Water Quality Report Pelucia Rural Water Association, Inc. PWS#: 080003, 080004, 080015 and 080017 June 2013

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Tallahatta Formation and the Meridian Upper Wilcox Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Pelucia Rural Water Association have received a lower susceptibility ranking to contamination.

If you have any questions about this report or concerning your water utility, please contact Charles Mims at 662.458.3762. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Monday of each month at 6:00 PM at the Pelucia office building located at 682 CR 23, Greenwood, MS 38930.

We routinely monitor for contaminates in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2012. In cases where monitoring wasn't required in 2012, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

008000	3	•	TEST RESU	ILTS			
Violation Y/N	Date Collected	Level Defected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG	MCL	Likely Source of Contamination
ontami	nants						
N	2011*	.046	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
N	2009/11*	1	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
	Violation Y/N Contami	Collected Contaminants N 2011*	Violation Date Level Detected Collected Detected Contaminants N 2011* .046	Violation Y/N Date Collected Detected Detected or # of Samples Exceeding MCL/ACL N 2011* .046 No Range	Violation Y/N Date Collected Level Detected Range of Detects or # of Samples Exceeding MCL/ACL Unit Measurement Fontaminants N 2011* .046 No Range ppm	Violation Y/N Date Collected Level Detected Range of Detects or # of Samples Exceeding MCL/ACL Unit Measurement MCLG Measurement Contaminants N 2011* .046 No Range ppm 2	Violation Y/N Date Collected Level Detected Range of Detects or # of Samples Exceeding MCL/ACL Unit Measurement MCLG MCL Contaminants N 2011* .046 No Range ppm 2 2

i	Chlorine	N	2012	.8	.89	mg/l	0	MRDL = 4	Water additive used to control
١									microbes

PWS ID#	: 008000	4	T	TEST RESU	LTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG	MCL.	Likely Source of Contamination
Inorganic	. Contam	inants						
10. Barium	N	2011*	.044	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2011*	.2	0	ppm	1.3	AL=1.3	
17. Lead	N	2009/11*	1	0	ppb	Ō	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Volatile C	Organic (Contamin	iants					
76. Xylenes	N	2012	.0008	No Range	ppm	10	10	Discharge from petroleum factories; discharge from chemica factories
Disinfecti	on By-Pr	oducts						•
Chlorine	N 2	2012 .8	.8	9 m	g/l	0 MR	1	Water additive used to control microbes

PWS ID#	: 008001	<u> </u>		TEST RESI							
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detec or # of Sample: Exceeding MCL/ACL		MC	CLG	MC	CL Likely Source of Contamination		
Inorganic	Contan	inants									
10. Barium	N	2011*	.047	No Range	ppm		2		Discharge of drilling wastes; discharge from metal refineries erosion of natural deposits		
14. Copper	N	2011*	.1	0	ppm		1.3	AL≂			
15. Cyanide	N	2011*	57.77	No Range	ppb		200	2	200 Discharge from steel/metal factories; discharge from plasti and fertilizer factories		
17. Lead	N	2009/11*	2	0	ppb		0	AL≃	=15 Corrosion of household plumbing systems, erosion of natural deposits		
Disinfecti	on By-Pi	oducts									
81. HAA5	····	2011* 2	T N	lo Range	ppb	0		60	By-Product of drinking water disinfection.		
Chlorine	N	2012 .6	3 .	.58 mg/l		0	0 MRDL =				

Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG		MCL.	Likely Source of Contamination	
Inorganic	Contam	inants								
10. Barium	N	2011*	.044	No Range	ppm	2		discharge fro	drilling wastes; om metal refineries; tural deposits	
14. Copper	N	2009/11*	.3	0	ppm	1.3	AL=1.	systems; ero deposits; lea	Corrosion of household plumbin systems; erosion of natural deposits; leaching from wood preservatives	
17. Lead	N	2009/11*	1	0	ppb	0	AL≃1	1	household plumbing sion of natural	
Disinfection	on By-Pr	oducts								
Chlorine		2012 .8	.8	9 n	ng/l	0 MR		Water additive u	sed to control	

^{*} Most recent sample. No sample required for 2012.

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

*****April 1, 2013 MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has completed the monitoring requirements and is now in compliance with the Radionuclides Rule. If you have any questions, please contact Karen Walters, Director of Compliance & Enforcement, Bureau of Public Water Supply, at 601.576.7518.

The Pelucia Rural Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

PROOF OF PUBLICATION

Secation

	- 1 - 0 - C - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
STATE OF MISSISSIPPI, PECEIVED-WA	CR SUPPLY
CH Y OF UKEENWOOD.	
LEFLORE COUNTY Before me, Eddle 2013 JUN 25	AM 8: 50
TIAL ALIJUN 23	AII O OO
Before me, TACUL CUS	, A Notary Public,
V 81. 0 -tm	Where
Clerk of the Greenwood Commonwealth, a newspi	aper published in Leflore
County, who, on oath, stated that the	notice attached hereto
was published in said newspaper for	
times, beginning June 19	20 3 and anding
June 19 20, 13, int	he following issues to wit-
20,, m.,	ine rolle will issues, to wit.
117	10
Vol. 117 No. 146 Dated JU	the 19 20 15
Vol. No. Dated	20
Vol. No. Dale of Reason	
VolNoNo.	20
10: 4	
1 5 W D 4 1 .	
VolNoDated AY JR	20
Vol. No. No. Patedo Expire	20
VOINONONONONO.	20
``````````````````````````````````````	
Printer's Fee \$Charles Fee	
1/. Cionos i ce	
Clerk Clerk	
	t <u>L</u>
Sworn to and subscribed before me, this	24' day of
June 20 13	
ankust	
whey	
∠Nota	ry Public

#### 2012 Annual Drinking Water Quality Report Pelucia Rural Water Association, Inc. PWS#: 080003, 080004, 080015 and 080017 June 2013

0

IK

SE

u

u

∍ų n

ov tre 1g.

111

q

OC

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to Inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Tallahatta Formation and the Meridian Upper Wilcox Anuftens.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its darking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Petudia Rural (Water Association have received a lower susceptibility ranking to contamination.

If you have any questions about this report or concerning your water utility, please contact Charles Mims at 662.458.3762. We want out their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Monday of each month at 6:00 PM at the Pelucia office building located at 682 CR 23, Greenwood, MS 3893000

We routinely monitor for contaminates in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1" to December 31", 2012. In cases where monitoring wasn't required in 7012, the table reflects the most recent results. As water travels over the surface of land or underground, if dissolves naturally occurring bineries and in some cases, radioactive materials and can pick up aubstances or contaminants from the presence of animals or from minant activity, microbial confaminants, such as virtuses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as safts and metals, which can be naturally occurring or result from untage stormagneter runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which are by-products of industrial processes and petroleum production, and can also the froftings stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining sativities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Meximum Residual Disinfectant Level Goal (MRDLG) — The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/t) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

PWS ID #	008000	3	•	TEST RESU	LTS			
Conteminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG	MCL.	Likety Source of Contamination
Inorganic (	Contam	inants						
10. Barlum	N	2011*	.048	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refinenes; erosion of natural deposits
17. Lead	N	2009/114	1	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits

		<del>,</del>					, ,	44000 - 4 14	Alotor odditiva ve	
	Chlorine	N	2012	.8.	.88.	mg/l		MINUL -4	LAGIOL UNNITLED TO	ed to countde
i	1 '	i			l .	1			micropes	for a registration between

Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Messure- ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants		1. 181 _{3.}	i De Daniel	a san a	·	garan kan Santara Santara kan kan kan kan ka
10. Barium	N	2011*	.044	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2011*	.2	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
17. Lead	N	2009/11*	1	0	bbp	0	AL=15	Corresion of household plumbing systems, erosion of natural deposits
Volatile C	rganic C	ontamir	iants					
76. Xylenes	ĪN	2012	.0008	No Range	ppm	10	10	Discharge from petroleum

76. Xylenes	N	c Co	012	.000	8	No Raлge	***********	ppm			10	Г	10	I Disability
			<del></del>										10	Discharge from petroleum factories; discharge from chemic factories
Disinfect														
Chlorine	N	201:	2	.8	T	89	mg/	1 T	··	0	MR	H = 1		Water additive used to control
										L				nicrobes
PWS ID#	: 0080	015			7	TEST RE	STIT :	TS						
Contaminant	Viola:		Date offected	Le	vei	Range of Det	ects	Unit		MCI	G [	MC	:L	Likely Source of Contamination
···				Dete	ctea	or # of Samp Exceeding MCL/ACL		Measu men						- Contraction of the Contraction
Inorganic	Conta	mina	ants											-
10. Barium	N		11'	.047		No Range	p	pm			2		2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N		11*	.1		0	p	pm			1.3	AL=	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
17. Lead		20		57.77		No Range	P	pb		2	00		00	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
	N		9/11*	2	, ,	0	Pi	ob			0	AL=	15	Corrosion of household plumbing systems, erosion of natural deposits
Disinfectio								****						debos((8
31. HAAS	N	2011*	2		No	Range	ppb		0	T		60	Ву	-Product of drinking water
Chlorine	N	2012	.6		.5	8	mg/l		Ö	'	WRDL	-4	W	unfaction. ater additive used to control crobes
PWS ID#:	00800	17			Т	EST RES	TIT.T	'e		,			~	
Contaminant	Violatio Y/N	in	Date lected	Leve	,	Range of Dete- or # of Sample Exceeding MCL/ACL	cts	Unit leasure ment		CLC	3		1	MCL Likely Source of Contamination
norganic	Contai	nina	nts			MODAL	·I				L_			
0. Barium	N	201	1*	.044	1	No Range	bb	m		~~	2	······	2	Discharge of driffing wastes; discharge from metal refineries;
4. Copper	N.	2009	9/11*	.3		0	pp	m .		1.	3	AL≈1	.3	erosion of natural deposits  Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood
7. Lead	N	2000	V11.	1		0	lqq	b			0	AL=1	5	preservatives Corrosion of household plumbing systems, erosion of natural deposits
) Jisinfection	n By-P	rodu	cts											

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from meterials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hottline or at http://www.epa.gov/safewater/lead. The Mississippl State Department of Health Public Health Laboratory offers lead testing. Please contact

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population, immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

# "April 1, 2013 Message from MSDH Concerning Radiological sampling*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed sampling by the scheduled deadline, however, during an audit of the Mississippi State Department of Health Radiotogical Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply. MSDH was required to issue a violation. This is to notify you that as of this date, your water system has completed the monitoring requirements and is now in compliance with the Radionuclides Rule. If you have any questions, please contact Karen Walters, Director of Compliance & Enforcement, Bureau of Public Water Supply, at 601.576.7518.

The Pelucia Rural Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.